
IB Mathematics Standard Level

Internal Assessment – The Exploration

~ Student Guide ~

I have computed the degree measure of angle BPT for different lengths of PE and recorded these results in Table 1. It is possible to see a relationship between the length of PE and the angle BPT after making a scatterplot of the data as shown in Figure 2. I decided to make PE the independent variable (horizontal axis) and angle BPT the dependent variable (vertical axis) because it gives some insight into how angle BPT changes as a function of PE. I can see from the scatterplot that angle BPT appears to have a maximum value some for a value of PE between PE=5 and PE=8. An important question is whether I can determine an expression for a function that gives angle BPT in terms of PE.

PE	$tan^{-1} \left(\frac{10}{PE} \right)$	$\tan^{-1}\frac{4}{PE}$	∠BPT
1	84.2895	75.9638	8.3257
2	78.6901	63.4350	15.2551
3	73.3008	53.1301	20.1707
4	68.1986	45.0000	23.1986
5	63.4350	38.6598	24.7752
6	59.0363	33.6901	25.3462
7	55.0080	29.7449	25.2631
8	51.3402	26.5651	24.7752
9	48.0128	23.9625	24.0503
10	41.9872	21.8014	20.1858

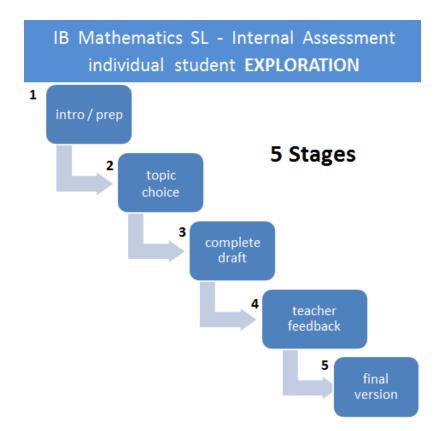
1. What is Internal Assessment in IB Mathematics Standard Level ?

Internal Assessment (IA) in Maths SL consists of a single internally assessed component (i.e. marked by the teacher) called a <u>mathematical exploration</u> (or just the "Exploration"). The Exploration contributes **20%** to your overall IB score for the course.

2. What is the Exploration ?

Your Exploration is a written report (6-12 pages) involving a mathematical topic that interests you. You will choose a topic in consultation with your teacher after conducting your own research.

3. How is the Exploration assessed ?


Your Exploration will earn a score out of 20 marks based on the following five criteria. Further details for each criterion and guidance for addressing them is provided later in this guide.

Criterion A	max 4 marks	Communication
Criterion B	max 3 marks	Mathematical Presentation
Criterion C	max 4 marks	Personal Engagement
Criterion D	max 3 marks	Reflection
Criterion E	max 6 marks	Use of Mathematics

Some important points to consider:

- In your Exploration you need to write *about mathematics* and <u>not</u> just *do mathematics*.
- Any idea, method, content, etc that is not your own <u>must</u> be cited at the point in the Exploration where it is used. Just listing your sources in a bibliography is <u>not</u> enough and may lead to the IB deciding that malpractice has occurred.
- The Exploration is an opportunity for you to learn more about a mathematical topic in which you are genuinely interested. You will be rewarded (**personal engagement**) for explaining your interest in the topic, and for demonstrating curiosity, creativity & independent thinking.
- Your **audience is your fellow students** that is, you need to write your Exploration so that your classmates in Maths SL can read and understand it. Thus, it is <u>not</u> necessary to explain in great detail basic mathematics that will be familiar to a student in Math SL.
- You will be rewarded (reflection) for expressing what <u>you</u> think about the mathematics you are exploring. You should endeavour to pose your own questions and try to answer them using suitably sufficient level of mathematical ideas and procedures.
- You will be required to submit a **complete draft** of your Exploration containing an introduction, conclusion and all planned content to sufficiently address all five criteria. You will receive feedback on the draft and then be given an opportunity to revise it to submit a final version.
- All of the work you do on your Exploration <u>must</u> be your own. When finished with your final version you will be required to sign a 'declaration' that states, "I confirm that this work is my own and is the final version. I have acknowledged each use of the words or ideas of another person, whether written, oral or visual."

Maths SL Exploration Timeline

Stage	Start date	End date Deadline
1. Introduction / Preparation		
2. Topic Choice		
3. Writing Draft		
4. Teacher Feedback (written)		
5. Final Version		

Notes:

<u>Step 1</u> Introduction / Preparation

Read the following two articles. The articles are **not** examples of IA Explorations but appeared in a professional journal for American math teachers and describe in detail how teachers might engage students in the exploration of a particular mathematical problem. Both articles illustrate good writing about mathematics at a level appropriate for SL Maths.

- article 1: Pathways and Barriers to Counting <u>https://www.parabola.unsw.edu.au/files/articles/2000-2009/volume-37-2001/issue-1/vol37_no1_3.pdf</u>
- article 2: Chasing Imaginary Triangles <u>https://cms.math.ca/crux/v31/n7/page453-456.pdf</u>

<u>Step 2</u> Choosing a topic for your Exploration

Listed on this page and the next page are 200 possible Exploration topics. Browse through the list and do some very quick research (perhaps 5 min spent looking at a Wikipedia page) on any topic that catches your interest. A quick look at some information about one of the topics may reveal some other topic (not on the list) which interests you. You will be given two weeks to organize a 'short list' of topics (3 to 5) that you will share with your teacher. You will need to consult with your teacher about any potential topic – regarding three important questions: (1) does the topic involve math at a suitable level for an SL Exploration? ; (2) is the topic narrow enough so that it can be treated sufficiently in a 6-12 page report? ; and (3) does the topic lend itself to demonstrating personal engagement (criterion C)? That is, can you envision some way that you could apply something of your own – your own viewpoint, your own examples, your own models (conceptual or physical), your own questions & ideas, etc. ■ Your topic must be approved by your teacher by the given deadline ■

◆ 200 Exploration ideas/topics ◆

Algebra & Number Theory

Modular arithmetic	Euler's identity: $e^{i\pi}$ +1 = 0	Goldbach's conjecture
	•	•
Chinese remainder theorem	Probabilistic number theory	Fermat's last theorem
Applications of complex numbers	Natural logarithms + complex numbers	Continued fractions
Diophantine equations	Twin primes problem	Hypercomplex numbers
General solution of a cubic equation	Diophantine application: Cole numbers	Applications of logarithms
Odd perfect numbers	Polar equations	Euclidean algorithm for GCF
Patterns in Pascal's triangle	Palindrome numbers	Finding prime numbers
Factorable integers of the form <i>ak</i> + <i>b</i>	Random numbers	Algebraic congruences
Pythagorean triples	Inequalities & Fibonacci numbers	Mersenne primes
Combinatorics – art of counting	Magic squares & cubes	Boolean algebra
Loci and complex numbers	Roots of unity	Matrices & Cramer's rule
Divisibility tests	Complex numbers & transformations	Egyptian fractions
Graphical representation of roots of co	mplex numbers	

Calculus/Analysis & Functions

Mean Value theorem Applications of power series Fundamental theorem of calculus Second order differential equations

Probability & Probability Distributions

Normal distribution and natural phenomena Monte Carlo simulations Insurance and calculating risks Determination of π by probability Bayes' theorem

Torricelli's trumpet (Gabriel's horn) Newton's law of cooling Brachistochrone (min.time) problem I'Hopital's rule and evaluating limits Integrating to infinity Hyperbolic functions The harmonic series Torus – solid of revolution

The Monty Hall problem Random walks Poisson distribution and queues Lotteries The birthday paradox

Geometry Non-Euclidean geometries Cavalieri's principle Packing 2D and 3D shapes Ptolemy's theorem Heron's formula Hexaflexagons Geodesic domes Proofs of Pythagorean theorem Tesseract – a 4D cube Minimal surfaces & soap bubbles Map projections Penrose tiles Tiling the plane – tessellations Morley's theorem Cycloid curve Symmetries of spider webs Fractal tilings Euler line of a triangle Pick's theorem & lattices Fermat point - polygons & polyhedral **Conic sections** Properties of a regular pentagon Nine-point circle **Regular polyhedral** Geometry of the catenary curve Euler's formula for polyhedral Stacking cannon balls Eratosthenes' - earth's circumference Ceva's theorem for triangles Area of an ellipse Constructing a cone from a circle Conic sections as loci of points Consecutive integral triangles Mandelbrot set and fractal shapes Curves of constant width Sierpinksi triangle Squaring the circle Polyominoes **Reuleaux triangle** Spherical geometry Architecture and trigonometry Statistics & Modelling Logistic function & constrained growth Modelling growth of tumours Traffic flow **Correlation coefficients** Modelling epidemics/spread of a virus Hypothesis testing Modelling the shape of a bird's egg Central limit theorem Modelling radioactive decay Modelling growth of computer power Regression to the mean Least squares regression Modelling change in record performances for a sport **Numerical Analysis** Methods for solving differential eqns Fixed point iteration Linear programming Methods of approximating π Applications of iteration Newton's method Estimating size of large crowds Generating the number *e* Descartes' rule of signs Logic & Sets Codes and ciphers Set theory and different 'size' infinities Mathematical induction (strong) Proof by contradiction Proving a number is irrational **Topology & Networks** Knots Steiner problem Chinese postman problem **Travelling Salesman Problem** Königsberg bridge problem Handshake problem Klein bottle Möbius strip Games & Game Theory The prisoner's dilemma Sudoku Gambler's fallacy Card games Knight's tour in chess **Physical, Biological & Social Sciences** Radiocarbon dating Gravity, orbits & escape velocity **Biostatistics** Mathematical methods in economics Genetics Crystallography Computing centres of mass **Elliptical orbits** Predicting an eclipse Logarithmic scales-decibel, Richter, etc Change in BMI for a person over time Fibonacci sequence and spirals in nature Concepts of equilibrium in economics Miscellaneous Mathematical card tricks Paper folding **Designing bridges** Methods of approximating π Barcodes Applications of parabolas

- Methods of approximating π BarcodesCurry's paradox 'missing' squareVoting systemsMusic notes, pitches, scales, etcTowers of Hanoi puzzleFlatland by Edwin Abbott (book)Art of M.C. EscherSundialsNavigational systemsThe abacusConstruction of calendarsDifferent number systemsMathematics of jugglingGlobal positioning system (GPS)Art of M.C.
- Mathematical card tricks Applications of parabola Terminal velocity Photography Harmonic mean A Beautiful Mind (film) Slide rules Airline routes

Step 3 Write a complete draft

Before you start writing your Exploration be sure to carefully read through the details for all five of the assessment criteria that is at the very end of this guide. Along with a brief description and achievement level descriptors, there is also helpful guidance notes for each criterion.

A draft is <u>not</u> an abbreviated or incomplete version of your Exploration. It must be **complete** – including an introduction, a conclusion and a bibliography – with sufficient content to address your stated objective(s) and be in the range of 6 to 12 pages (spacing 1½, font Times New Roman). Your Exploration needs to be logically organized; use appropriate mathematical terminology and notation; include explanatory diagrams, graphs, tables, etc; contain citations to indicate where a source is used; and focuses on the relevant mathematics. It is important to include your own thoughts, questions, reflections & ideas when possible. Write in the first person, e.g. "I decided that the best method is _____ because I realized that …"

Although the Exploration is an individual assignment and all the work must be your own, you are strongly encouraged to regularly consult with your teacher. Your teacher can provide verbal guidance and feedback while you are writing your draft.

■ Submit a paper and electronic version of your draft to your teacher by the given deadline ■

Step 4 Teacher feedback

Your teacher will provide written feedback on the draft of your Exploration. Be sure to ask questions about any comments / feedback that you do not completely understand.

<u>Step 5</u> Submit final version of your Exploration

From the time you receive written feedback on your draft you will have 6 weeks (3 school weeks & 3 weeks of the winter holiday) to revise your draft and complete the final version of your Exploration. Before submitting your final version complete the **student checklist** on the next page \rightarrow

■ Submit a paper & electronic version of your final Exploration to your teacher by the deadline ■

See **"The Exploration – Top Tips"** at the very end of this Student Guide. It lists five important points that will help you with your Exploration.

It is absolutely critical that you are completely familiar with all five of the **assessment criteria**. All of the details for the assessment criteria appear on pages 8-10 in this Guide. Carefully read the **Descriptors** and **Further Guidance** for all of the five criteria. Ask your teacher if you have questions or need further clarification.

Mathematics SL Exploration **D** Student Checklist

	Student: da	ate:	
1.	Is your report written entirely by yourself – and trying to avoid simply rep work and ideas from sources you found during your research?	olicating	🗌 No
2.	Have you strived to apply your personal interest; develop your own ideas critical thinking skills during your exploration and demonstrate these in y		🗌 No
3.	Have you referred to the five assessment criteria while writing your report	rt? 🗌 Yes	🗌 No
4.	Does your report focus on good mathematical communication – and read an article for a mathematical journal?	l like	🗌 No
5.	Does your report have a clearly identified introduction and conclusion?	Yes	🗌 No
6.	Have you documented all of your source material in a detailed bibliograp in line with the IB academic honesty policy?	bhy	🗌 No
7.	Not including the bibliography, is your report 6 to 12 pages?	Yes	🗌 No
8.	Are graphs, tables and diagrams sufficiently described and labelled?	Yes	🗌 No
9.	To the best of your knowledge, have you used and demonstrated mather that is at the same level, or above, of that studied in IB Mathematics SL?	natics	🗌 No
10.	Have you attempted to discuss mathematical ideas, and use mathematical sufficient level of knowledge and understanding?	s, with a	🗌 No
11.	Are formulae, graphs, tables and diagrams in the main body of text? (preferably no full-page graphs; and no separate appendices)	Yes	🗌 No
12.	Have you used technology – such as a GDC, spreadsheet, mathematics so drawing & word-processing software – to enhance mathematical commu		🗌 No
13.	Have you used appropriate mathematical language (notation, symbols, terminology) and defined key terms?	Yes	🗌 No
14.	Is the mathematics in your report performed precisely and accurately?	Yes	🗌 No
15.	Has calculator/computer notation and terminology not been used? ($y = x^2$, not $y = x^2$; \approx , not = for approx. values; π , not pi; $ x $, not	abs(x); etc)	🗌 No
16.	At suitable places in your report – especially in the conclusion – have you reflective and explanatory comments about the mathematical topic being		🗌 No

Criteria for SL Exploration (IA)

Criterion A: Communication (4 marks)

This criterion assesses the organization and coherence of the exploration. A well-organised exploration has an **introduction**, a **rationale** (a brief explanation of why the topic was chosen), describes the **aim** of the exploration and has a **conclusion**. A coherent exploration is logically developed and easy to follow.

Achievement Level	Descriptor
0	The Exploration does not reach the standard described by the descriptors below.
1	The Exploration has some coherence.
2	The Exploration has some coherence and shows some organization.
3	The Exploration is coherent and well organized.
4	The Exploration is coherent, well organized, concise and complete.

Further Guidance

- A **complete** exploration will have all steps clearly explained, and will meet its aim.
- Organization refers to the overall structure or framework, including the introduction, body, conclusion etc.
- A coherent exploration displays a logical development and is not difficult to follow ('reads well').
- A concise exploration remains focused on the overall aim and avoids irrelevant material.
- Key ideas and concepts need to be clearly explained.
- Graphs, tables and diagrams should be embedded in the text where most appropriate and <u>not</u> be put in an appendix at the end of the document.
- The use of technology is not required but strongly encouraged where appropriate.
- It is absolutely critical that the use of a source is cited (footnoted) at the location where it is used.
- Your bibliography must list all sources (books, websites, etc) you consulted when writing your Exploration.

Criterion B: Mathematical Presentation (3 marks)

This criterion assesses to what extent you are able to clearly and effectively use multiple forms of mathematical representation such as formulae, diagrams, tables, graphs and models.

Achievement Level	Descriptor
0	The Exploration does not reach the standard described by the descriptors below.
1	There is some appropriate mathematical presentation.
2	The mathematical presentation is mostly appropriate.
3	The mathematical presentation is appropriate throughout.

Further Guidance

- You are expected to use mathematical language (notation, symbols & terminology) when communicating mathematical ideas, reasoning and findings.
- You should use appropriate technology such as graphic display calculators; and software such as equation editors, spreadsheets, dynamic geometry, computer algebra, drawing and word-processing software along with other mathematical software to enhance the presentation of mathematics in your Exploration.
- The meaning of key terms should clear and any variables or parameters should be explicitly defined.
- All graphs, tables & diagrams should be clearly labelled and include captions where appropriate.
- Do <u>not</u> use calculator or computer notation unless it is software generated and cannot be changed.

Criterion C: Personal Engagement (4 marks)

This criterion assesses the extent you engage with the exploration and make it your own. This includes independent thinking, creativity, addressing personal interest and presenting math ideas in your own way.

Achievement Level	Descriptor
0	The Exploration does not reach the standard described by the descriptors below.
1	There is evidence of limited or superficial personal engagement.
2	There is evidence of some personal engagement.
3	There is evidence of significant personal engagement.
4	There is abundant evidence of outstanding personal engagement.

Further Guidance

- It is important to choose a topic in which you are genuinely interested.
- If it is necessary to include mathematical work from a source such as a textbook in your Exploration then you should endeavour to insert your own comments and description of the work as much as possible.
- Ways to show personal engagement include: investigating your own questions & conjectures; making up your own examples; presenting ideas & results in your own words; creating your own models or functions.

Criterion D: Reflection (3 marks)

This criterion assesses how well you review, analyze and evaluate your exploration. Although reflection may be seen in the conclusion, it should also exist throughout the exploration. Reflection may be demonstrated by considering limitations or extensions, and relating mathematical ideas to your own previous knowledge.

Achievement Level	Descriptor
0	The Exploration does not reach the standard described by the descriptors below.
1	There is evidence of limited or superficial reflection.
2	There is evidence of meaningful reflection.
3	There is substantial evidence of critical reflection.

Further Guidance

- Simply describing results represents **limited or superficial reflection**. To achieve a score higher than 1 you will need to provide deeper and more sophisticated consideration of methods and results.
- Ways of showing **meaningful reflection** include: linking results to the aim of your Exploration; commenting on what you have learned; considering limitations; or comparing different mathematical approaches.
- Ways of showing critical reflection include: considering implications of results; discussing strengths and weaknesses of methods; considering different perspectives; making links between different areas of math.
- Substantial evidence is likely to mean that reflection is present throughout the exploration.

Criterion E: Use of Mathematics (6 marks)

This criterion assesses to what extent you use mathematics in your exploration. The mathematics explored should either be part of the syllabus, or at a similar level, or beyond. It should not be completely based on mathematics listed in the prior learning topics. If the level of mathematics is not commensurate with the course, a maximum of two marks can be awarded for this criterion. A piece of mathematics can be regarded as correct even if there are a few minor errors so long as they do not cause a disruption to the flow of mathematics or lead to an incorrect or inaccurate result.

Achievement Level	Descriptor
0	The Exploration does not reach the standard described by the descriptors below.
1	Some relevant mathematics is used.
2	Some relevant mathematics is used. Limited understanding is demonstrated.
3	Relevant mathematics commensurate with the level of the course is used. Limited understanding is demonstrated.
4	Relevant mathematics commensurate with the level of the course is used. The mathematics explored is partially correct. Some knowledge and understanding are demonstrated.
5	Relevant mathematics commensurate with the level of the course is used. The mathematics explored is mostly correct. Good knowledge and understanding are demonstrated.
6	Relevant mathematics commensurate with the level of the course is used. The mathematics explored is correct. Thorough knowledge and understanding are demonstrated.

Further Guidance

- It is critical that you clearly demonstrate you understand the mathematical concepts and methods you write about in your Exploration. Obtaining a correct answer is not sufficient to 'demonstrate' understanding.
- If only a minimal amount of mathematics commensurate with the SL course is used but the math is central to the development of the exploration the exploration may achieve level 3 or more.
- Regression using technology is commensurate with the SL course but understanding must be demonstrated in order to achieve higher than level 1.
- If the mathematics used is **relevant** to the topic, **commensurate** with the SL course, and clear **understanding** is demonstrated, then the Exploration can achieve a high level in this criterion.

The Exploration – Top Tips

- 1. Choose a topic in consultation with your teacher that: (i) you're interested in, (ii) involves math at a level suitable for Math SL, (iii) is narrow enough for 6-12 pages, (iv) has opportunities for personal engagement.
- **2.** Your Exploration must have an aim or objective which involves doing some mathematics. It is important to maintain a focus on the overall aim/objective and a focus on mathematical concepts and methods.
- **3.** Although all the work on your Exploration must be your own, do not hesitate to ask your teacher for advice and feedback at any stage. Your teacher will provide written feedback on your draft.
- **4.** Be sure you fully understand the expectations of the five assessment criteria, and refer back to them while you are planning and writing your Exploration.
- 5. The Exploration is an opportunity to complete a significant assessment item (20% of IB score) while <u>not</u> under the pressure of timed exam conditions. Take advantage of the opportunity by following instructions, meeting deadlines, engaging & reflecting in your own way, and enjoying some math you are interested in.