Notation list

Of the various notations in use, the IB has chosen to adopt a system of notation based on the recommendations of the International Organization for Standardization (ISO). This notation is used in the examination papers for this course without explanation. If forms of notation other than those listed in this guide are used on a particular examination paper, they are defined within the question in which they appear.

Because students are required to recognize, though not necessarily use, IB notation in examinations, it is recommended that teachers introduce students to this notation at the earliest opportunity. Students are not allowed access to information about this notation in the examinations.

Students must always use correct mathematical notation, not calculator notation.

\mathbb{N}	the set of positive integers and zero, $\{0,1,2,3, \ldots\}$
\mathbb{Z}	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
\mathbb{Z}^{+}	the set of positive integers, $\{1,2,3, \ldots\}$
\mathbb{Q}	the set of rational numbers
\mathbb{Q}^{+}	the set of positive rational numbers, $\{x \mid x \in \mathbb{Q}, x>0\}$
\mathbb{R}	the set of real numbers
\mathbb{R}^{+}	the set of positive real numbers, $\{x \mid x \in \mathbb{R}, x>0\}$
$\left\{x_{1}, x_{2}, \ldots\right\}$	the set with elements x_{1}, x_{2}, \ldots
$n(A)$	the number of elements in the finite set A
$\{x \mid$ \}	the set of all x such that
ϵ	is an element of
\notin	is not an element of
\varnothing	the empty (null) set
U	the universal set
\cup	Union

\bigcirc	Intersection
\subset	is a proper subset of
\subseteq	is a subset of
A^{\prime}	the complement of the set A
$a \mid b$	a divides b
$a^{1 / n}, \sqrt[n]{a}$	a to the power of $\frac{1}{n}, n^{\text {th }}$ root of a (if $a \geq 0$ then $\sqrt[n]{a} \geq 0$)
$\|x\|$	modulus or absolute value of x, that is $\left\{\begin{aligned} x & \text { for } x \geq 0, x \in \mathbb{R} \\ -x & \text { for } x<0, x \in \mathbb{R}\end{aligned}\right.$
\approx	is approximately equal to
>	is greater than
\geq	is greater than or equal to
$<$	is less than
\leq	is less than or equal to
\ngtr	is not greater than
*	is not less than
u_{n}	the $n^{\text {th }}$ term of a sequence or series
d	the common difference of an arithmetic sequence
r	the common ratio of a geometric sequence
S_{n}	the sum of the first n terms of a sequence, $u_{1}+u_{2}+\ldots+u_{n}$
S_{∞}	the sum to infinity of a sequence, $u_{1}+u_{2}+\ldots$
$\sum_{i=1}^{n} u_{i}$	$u_{1}+u_{2}+\ldots+u_{n}$
$\binom{n}{r}$	the $r^{\text {th }}$ binomial coefficient, $r=0,1,2, \ldots$, in the expansion of $(a+b)^{n}$
n !	$n(n-1)(n-2) \times \ldots \times 3 \times 2 \times 1$
$f: x \mapsto y$	f is a function under which x is mapped to y

$f(x)$	the image of x under the function f
f^{-1}	the inverse function of the function f
$f \circ g$	the composite function of f and g
$\lim _{x \rightarrow a} f(x)$	the limit of $f(x)$ as x tends to a
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	the derivative of y with respect to x
$f^{\prime}(x)$	the derivative of $f(x)$ with respect to x
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	the second derivative of y with respect to x
$f^{\prime \prime}(x)$	the second derivative of $f(x)$ with respect to x
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$	the $n^{\text {th }}$ derivative of y with respect to x
$f^{(n)}(x)$	the $n^{\text {th }}$ derivative of $f(x)$ with respect to x
$\int y \mathrm{~d} x$	the indefinite integral of y with respect to x
$\int_{a}^{b} y \mathrm{~d} x$	the definite integral of y with respect to x between the limits $x=a$ and $x=b$
e^{x}	exponential function (base e) of x
$\log _{a} x$	logarithm to the base a of x
$\ln x$	the natural logarithm of $x, \log _{\mathrm{e}} x$
sin, cos, tan	the circular functions
$\mathrm{A}(x, y)$	the point A in the plane with Cartesian coordinates x and y
[AB]	the line segment with end points A and B
AB	the length of [AB]
(AB)	the line containing points A and B
\hat{A}	the angle at A
CÂB	the angle between [CA] and [AB]

$\triangle \mathrm{ABC}$	the triangle whose vertices are A, B and C
v	the vector \boldsymbol{v}
$\overrightarrow{\mathrm{AB}}$	the vector represented in magnitude and direction by the directed line segment from A to B
a	the position vector $\overrightarrow{\mathrm{OA}}$
$\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$	unit vectors in the directions of the Cartesian coordinate axes
$\|\boldsymbol{a}\|$	the magnitude of \boldsymbol{a}
$\|\overrightarrow{\mathrm{AB}}\|$	the magnitude of AB
$v \cdot w$	the scalar product of \boldsymbol{v} and \boldsymbol{w}
$\mathrm{P}(A)$	probability of event A
$\mathrm{P}\left(A^{\prime}\right)$	probability of the event "not A "
$\mathrm{P}(A \mid B)$	probability of the event A given the event B
x_{1}, x_{2}, \ldots	Observations
f_{1}, f_{2}, \ldots	frequencies with which the observations x_{1}, x_{2}, \ldots occur
$\binom{n}{r}$	number of ways of selecting r items from n items
$\mathrm{B}(n, p)$	binomial distribution with parameters n and p
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
$X \sim \mathrm{~B}(n, p)$	the random variable X has a binomial distribution with parameters n and p
$X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$	the random variable X has a normal distribution with mean μ and variance σ^{2}
μ	population mean
σ^{2}	population variance
σ	population standard deviation
\bar{x}	mean of a set of data, $x_{1}, x_{2}, x_{3}, \ldots$

standardized normal random variable, $z=\frac{x-\mu}{\sigma}$
cumulative distribution function of the standardized normal variable with distribution $\mathrm{N}(0,1)$

Pearson's product-moment correlation coefficient

